Grassmann-Hopf algebras and coalgebras


0.1 Definitions of Grassmann-Hopf Al/gebras, Their Dual
Co-Algebras, and Grassmann–Hopf Al/gebroids

Let V be a (complex) vector spaceMathworldPlanetmath, dim𝒞V=n, and let {e0,e1,,} with identityPlanetmathPlanetmathPlanetmathPlanetmath e01, be the generatorsPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath of a Grassmann (exterior) algebraPlanetmathPlanetmathPlanetmath

Λ*V=Λ0VΛ1VΛ2V (0.1)

subject to the relationMathworldPlanetmathPlanetmath eiej+ejei=0 . Following Fauser (2004) we append this algebra with a Hopf structureMathworldPlanetmath to obtain a ‘co–gebra’ based on the interchange (or ‘tangled duality’):

(objects/points𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚𝑠)(𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚𝑠objects/points.)

This leads to a tangle duality between an associative (unital algebra) 𝒜=(A,m), and an associative (unital) ‘co–gebra’ 𝒞=(C,Δ) :

  • i

    the binary productPlanetmathPlanetmathPlanetmath AA𝑚A, and

  • ii

    the coproductMathworldPlanetmath CΔCC

, where the Sweedler notation (Sweedler, 1996), with respect to an arbitrary basis is adopted:

Δ(x) =rarbr=(x)x(1)x(2)=x(1)x(2)
Δ(xi) =iΔijk=(r)a(r)jb(r)k=x(1)x(2)

Here the Δijk are called ‘sectionPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath coefficients’. We have then a generalizationPlanetmathPlanetmath of associativity to coassociativity:

CΔCCΔidΔCCΔidCCC (0.2)

inducing a tangled duality between an associative (unital algebra 𝒜=(A,m), and an associative (unital) ‘co–gebra’ 𝒞=(C,Δ) . The idea is to take this structure and combine the Grassmann algebra (Λ*V,) with the ‘co-gebra’ (Λ*V,Δ) (the ‘tangled dual’) along with the Hopf algebraPlanetmathPlanetmathPlanetmath compatibility rules: 1) the product and the unit are ‘co–gebra’ morphismsMathworldPlanetmath, and 2) the coproduct and counit are algebra morphisms.

Next we consider the following ingredients:

  • (1)

    the graded switch τ^(AB)=(-1)ABBA

  • (2)

    the counit ε (an algebra morphism) satisfying (εid)Δ=id=(idε)Δ

  • (3)

    the antipode S .

The Grassmann-Hopf algebra H^ thus consists of–is defined by– the septet H^=(Λ*V,,id,ε,τ^,S).

Its generalization to a Grassmann-Hopf algebroid is straightforward by considering a groupoidPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath 𝖦, and then defining a H-𝐴𝑙𝑔𝑒𝑏𝑟𝑜𝑖𝑑 as a quadruple (GH,Δ,ε,S) by modifying the Hopf algebroid definition so that H^=(Λ*V,,id,ε,τ^,S) satisfies the standard Grassmann-Hopf algebra axioms stated above. We may also say that (HG,Δ,ε,S) is a weak C*-Grassmann-Hopf algebroid when H is a unital C*-algebra (with 𝟏). We thus set 𝔽=. Note however that the tangled-duals of Grassman-Hopf algebroids retain both the intuitive interactions and the dynamic diagram advantages of their physical, extended symmetryPlanetmathPlanetmathPlanetmath representationsPlanetmathPlanetmath exhibited by the Grassman-Hopf al/gebras and co-gebras over those of either weak C*- Hopf algebroids or weak Hopf C*- algebras.

References

  • 1 E. M. Alfsen and F. W. Schultz: Geometry of State Spaces of Operator Algebras, Birkhäuser, Boston–Basel–Berlin (2003).
  • 2 I. Baianu : Categories, FunctorsMathworldPlanetmath and Automata Theory: A Novel Approach to Quantum Automata through Algebraic–Topological Quantum Computations., Proceed. 4th Intl. Congress LMPS, (August-Sept. 1971).
  • 3 I. C. Baianu, J. F. Glazebrook and R. Brown.: A Non–AbelianMathworldPlanetmathPlanetmath, Categorical Ontology of Spacetimes and Quantum Gravity., Axiomathes 17,(3-4): 353-408(2007).
  • 4 I.C.Baianu, R. Brown J.F. Glazebrook, and G. Georgescu, Towards Quantum Non–Abelian Algebraic Topology, (2008).
  • 5 F.A. Bais, B. J. Schroers and J. K. Slingerland: Broken quantum symmetry and confinement phases in planar physics, Phys. Rev. Lett. 89 No. 18 (1–4): 181–201 (2002).
  • 6 J.W. Barrett.: Geometrical measurements in three-dimensional quantum gravity. Proceedings of the Tenth Oporto Meeting on Geometry, Topology and Physics (2001). Intl. J. Modern Phys. A 18 , October, suppl., 97–113 (2003)
  • 7 M. Chaician and A. Demichev: Introduction to Quantum GroupsPlanetmathPlanetmathPlanetmathPlanetmath, World Scientific (1996).
  • 8 Coleman and De Luccia: Gravitational effects on and of vacuum decay., Phys. Rev. D 21: 3305 (1980).
  • 9 L. Crane and I.B. Frenkel. Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases. Topology and physics. J. Math. Phys. 35 (no. 10): 5136–5154 (1994).
  • 10 W. Drechsler and P. A. Tuckey: On quantum and parallel transport in a Hilbert bundle over spacetime., Classical and Quantum Gravity, 13:611-632 (1996). doi: 10.1088/0264–9381/13/4/004
  • 11 V. G. Drinfel’d: Quantum groups, In Proc. Int. Congress of Mathematicians, Berkeley, 1986, (ed. A. Gleason), Berkeley, 798-820 (1987).
  • 12 G. J. Ellis: Higher dimensional crossed modules of algebras, J. of Pure Appl. Algebra 52: 277-282 (1988), .
  • 13 P.. I. Etingof and A. N. Varchenko, Solutions of the Quantum Dynamical Yang-Baxter Equation and Dynamical Quantum Groups, Comm.Math.Phys., 196: 591-640 (1998).
  • 14 P. I. Etingof and A. N. Varchenko: Exchange dynamical quantum groups, Commun. Math. Phys. 205 (1): 19-52 (1999)
  • 15 P. I. Etingof and O. Schiffmann: Lectures on the dynamical Yang–Baxter equations, in Quantum Groups and Lie Theory (Durham, 1999), pp. 89-129, Cambridge University Press, Cambridge, 2001.
  • 16 B. Fauser: A treatise on quantum Clifford AlgebrasPlanetmathPlanetmath. Konstanz, Habilitationsschrift.
    arXiv.math.QA/0202059 (2002).
  • 17 B. Fauser: Grade Free productMathworldPlanetmath Formulae from Grassmann–Hopf Gebras. Ch. 18 in R. Ablamowicz, Ed., Clifford Algebras: Applications to Mathematics, Physics and Engineering, Birkhäuser: Boston, Basel and Berlin, (2004).
  • 18 J. M. G. Fell.: The Dual SpacesPlanetmathPlanetmath of C*–Algebras., Transactions of the American Mathematical Society, 94: 365–403 (1960).
  • 19 F.M. Fernandez and E. A. Castro.: (Lie) Algebraic Methods in Quantum Chemistry and Physics., Boca Raton: CRC Press, Inc (1996).
  • 20 R. P. Feynman: Space–Time Approach to Non–Relativistic Quantum Mechanics, Reviews of Modern Physics, 20: 367–387 (1948). [It is also reprinted in (Schwinger 1958).]
  • 21 A. Fröhlich: Non-AbelianMathworldPlanetmathPlanetmath Homological Algebra. I.Derived functorsMathworldPlanetmath and satellites., Proc. London Math. Soc., 11(3): 239–252 (1961).
  • 22 R. Gilmore: Lie Groups, Lie Algebras and Some of Their Applications., Dover Publs., Inc.: Mineola and New York, 2005.
  • 23 P. Hahn: Haar measure for measure groupoids., Trans. Amer. Math. Soc. 242: 1–33(1978).
  • 24 P. Hahn: The regular representationsPlanetmathPlanetmath of measure groupoids., Trans. Amer. Math. Soc. 242:34–72(1978).
  • 25 R. Heynman and S. Lifschitz. 1958. Lie Groups and Lie Algebras., New York and London: Nelson Press.
  • 26 C. Heunen, N. P. Landsman, B. Spitters.: A topos for algebraic quantum theoryPlanetmathPlanetmath, (2008)
    arXiv:0709.4364v2 [quant–ph]
Title Grassmann-Hopf algebras and coalgebras
Canonical name GrassmannHopfAlgebrasAndCoalgebrasgebras
Date of creation 2013-03-22 18:10:55
Last modified on 2013-03-22 18:10:55
Owner bci1 (20947)
Last modified by bci1 (20947)
Numerical id 52
Author bci1 (20947)
Entry type Topic
Classification msc 81T18
Classification msc 81T13
Classification msc 55Q25
Classification msc 81T10
Classification msc 16W30
Classification msc 81T05
Classification msc 57T05
Classification msc 15A75
Synonym tangled-dual Grassmann-Hopf co-algebra
Related topic QED
Related topic WeakHopfCAlgebra2
Related topic WeakHopfCAlgebra
Related topic DualOfACoalgebraIsAnAlgebra
Related topic CAlgebra3
Related topic TopicEntryOnTheAlgebraicFoundationsOfQuantumAlgebraicTopology
Related topic AlgebraicFoundationsOfQuantumAlgebraicTopology
Related topic QuantumAlgebraicTopologyOfCWComplexRepresentationsNewQATResult
Defines Grassmann-Hopf algebra
Defines dual Grassmann-Hopf co-algebra and gebra or tangled algebra
Defines observable operator algebra
Defines Grassman-Hopf algebroid