proof of values of the Riemann zeta function in terms of Bernoulli numbers


This article proves part of the theorem given in the article.

Theorem 1.

For any positive integer n

ζ(2n)=(2π)2n|B2n|2(2n)!

where B2n is the 2nth Bernoulli numberDlmfDlmfMathworldPlanetmathPlanetmath.

Proof. The method is as follows. Using Fourier series together with inductionMathworldPlanetmath on n, we derive a formulaMathworldPlanetmathPlanetmath for the Bernoulli periodic function B2n(x) involving an infinite sum. On setting x to 0, this sum reduces to a constant times the appropriate zeta functionMathworldPlanetmath, and the result follows.

We first compute the Fourier series for B2(x). B2(x) is periodic with period 1, so

cn=01B2(x)e-2πinx𝑑x=01x2e-2πinx𝑑x-01xe-2πinx𝑑x+1601e-2πinx𝑑x

We have

01e-2πinx𝑑x=0
01xe-2πinxdx=-12πnxe-2πinx|01+12πin01e-2πinxdx=i2πn
01x2e-2πinxdx=-12πinx2e-2πinx|01+22πin01xe-2πinxdx=12π2n2+i2πn

so that

cn=12π2n2

But then bn=cn-c-n=0 for all n, a0=0, and for n>0, an=cn+c-n=1π2n2 (where an are the coefficients of cos and bn the coefficients of sin in the Fourier series). Thus

B2(x)=k=11π2k2cos(2πkx)=1π2k=11k2cos(2πkx)

Using this case as an inductive hypothesis, assume that for some n2

B2(n-1)(x)=(-1)n2(2(n-1))!(2π)2(n-1)k=11k2(n-1)cos(2πkx)

Then on (0,1)

B2n′′(x)=(2n)(2n-1)B2(n-1)(x)=(-1)n2(2n)!(2π)2(n-1)k=11k2(n-1)cos(2πkx)

and thus

B2n(x)=(-1)n2(2n)!(2π)2(n-1)k=11k2(n-1)cos(2πkx)dxdx

Since n2, the sum converges absolutely, so we can move the sum outside the integralsDlmfPlanetmath, and we get

B2n(x) =(-1)n2(2n)!(2π)2(n-1)k=11k2(n-1)cos(2πkx)𝑑x𝑑x
=(-1)n2(2n)!(2π)2(n-1)k=11k2(n-1)-14π2k2cos(2πkx)
=(-1)n+12(2n)!(2π)2nk=11k2ncos(2πkx)

Thus we have established this formula for all n1. Setting x=0, then, we get

B2n=(-1)n+12(2n)!(2π)2nk=11k2n=(-1)n+12(2n)!(2π)2nζ(2n)

or, trivially rewriting,

ζ(2n)=(-1)n+1(2π)2nB2n2(2n)!

But clearly ζ(2n)>0 for n1, so it must be that the B2n alternate in sign, and thus

ζ(2n)=(2π)2n|B2n|2(2n)!

Note that as a effect of this proof, we see that the even-index Bernoulli numbers alternate in sign!

Title proof of values of the Riemann zeta functionDlmfDlmfMathworldPlanetmath in terms of Bernoulli numbers
Canonical name ProofOfValuesOfTheRiemannZetaFunctionInTermsOfBernoulliNumbers
Date of creation 2013-03-22 17:46:37
Last modified on 2013-03-22 17:46:37
Owner rm50 (10146)
Last modified by rm50 (10146)
Numerical id 5
Author rm50 (10146)
Entry type Proof
Classification msc 11M99