two isomorphic groups


The set of 3x3 permutation matricesMathworldPlanetmath form a group under matrix multiplicationMathworldPlanetmath. This example demonstrates that fact and develops the multiplication table and compares it to S3. Although there are alternative ways to fill in the table, this example serves to help the beginner. Here we will see that the two groups have the same structureMathworldPlanetmath. We begin by defining the elements of our group.

I=(100010001)R=(100001010)A=(010001100)S=(001010100)B=(001100010)T=(010100001)

Here, our group is just P3={I,A,B,R,S,T}. Now, we can start to multiply and then fill in the table. First, we calculate the square of each elements.

A2=(010001100)(010001100)=(001100010)=B
B2=(001100010)(001100010)=(010001100)=A
R2=(100001010)(100001010)=(100010001)=I
S2=(001010100)(001010100)=(100010001)=I
T2=(010100001)(010100001)=(100010001)=I

Now starting with the upper left 3x3 block, we go through the table.

AB=(010001100)(001100010)=(100010001)=I
BA=(001100010)(010001100)=(100010001)=I

We can completePlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath the upper left 3x3 block of the table and complete diagonal using the above values. We note that no row or column can have a repeated elements which follows from the of a group. Next, we work on the upper right 3x3 block of the table.

AR=(010001100)(100001010)=(001010100)=S
AS=(010001100)(001010100)=(010100001)=T

Now we can complete the upper right 3 x 3 block of the table. Next, we work on the lower left 3x3 block of the table.

RA=(100001010)(010001100)=(010100001)=T
RB=(100001010)(001100010)=(001010100)=S
SA=(001010100)(010001100)=(100001010)=R

Now we can complete the lower left 3x3 block of the table. Finally, we work on the lower right 3x3 block of the table.

RS=(100001010)(001010100)=(001100010)=B
SR=(001010100)(100001010)=(010100001)=A

This completes the multiplication and the table is given below.

IABRSTIIABRSTAABISTRBBIATRSRRTSIBASSRTAIBTTSRBAI

Next, we want to compare this table to the symmetric groupMathworldPlanetmathPlanetmath S3. We begin as before by defining the elements as follows.

e=(1 2 31 2 3)       r=(1 2 32 1 3)
a=(1 2 32 3 1)       s=(1 2 33 2 1)
b=(1 2 33 1 2)       t=(1 2 31 3 2)

The multiplication table for this group is obtained within the entry symmetric group on three letters. The table is:

eabrsteeabrstaabestrbbeatrsrrtsebassrtaebttsrbae

Define the following homomorphismPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath φ:S3P3 by the following:

φ(e)=I;

φ(a)=A;

φ(b)=B;

φ(r)=R;

φ(s)=S;

φ(t)=T.

Since φ is a bijection, we conclude that P3 and S3 are isomorphicPlanetmathPlanetmath.

Title two isomorphic groupsMathworldPlanetmath
Canonical name TwoIsomorphicGroups
Date of creation 2013-03-22 15:52:28
Last modified on 2013-03-22 15:52:28
Owner Wkbj79 (1863)
Last modified by Wkbj79 (1863)
Numerical id 10
Author Wkbj79 (1863)
Entry type Example
Classification msc 20B30